16 Des 2010

Gerak Harmonik

Jenis Gerak Harmonik Sederhana

Gerak Harmonik Sederhana dapat dibedakan menjadi 2 bagian, yaitu :
  • Gerak Harmonik Sederhana (GHS) Linier, misalnya penghisap dalam silinder gas, gerak osilasi air raksa / air dalam pipa U, gerak horizontal / vertikal dari pegas, dan sebagainya.
  • Gerak Harmonik Sederhana (GHS) Angular, misalnya gerak bandul/ bandul fisis, osilasi ayunan torsi, dan sebagainya.

Beberapa Contoh Gerak Harmonik Sederhana

  • Gerak harmonik pada bandul
Ketika beban digantungkan pada ayunan dan tidak diberikan gaya, maka benda akan dian di titik keseimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.






  • Gerak harmonik pada pegas
Semua pegas memiliki panjang alami sebagaimana tampak pada gambar. Ketika sebuah benda dihubungkan ke ujung sebuah pegas, maka pegas akan meregang (bertambah panjang) sejauh y. Pegas akan mencapai titik kesetimbangan jika tidak diberikan gaya luar (ditarik atau digoyang).

Besaran Fisika pada Ayunan Bandul

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode. Periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran. Benda dikatakan melakukan satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut. Satuan periode adalah sekon atau detik.

Frekuensi (f)

Frekuensi adalah banyaknya getaran yang dilakukan oleh benda selama satu detik, yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah hertz.

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah:

\frac{1 getaran}{f getaran}1 sekon = \frac{1}{f}sekon

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut:

T = \frac{1}{f}

f = \frac{1}{T}

Amplitudo

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan.

0 komentar: